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Abstract—Open source projects rely on issue tracking systems
such as JIRA or online forums to keep track of users’ feedback,
expectations and requested features. However, since users are not
fully aware of existing features, when submitting new feature
requests, redundant requests often appear in the new feature
list. It is a waste of time and effort for project contributors
to manually identify and reject them, especially in complex
systems with many features. Our research is aiming to find
a suitable solution to identify redundant feature requests in
OSS projects. We have conducted a survey on a well-known
Open Source community, Hibernate and gathered all of its
feature requests up-to-date. Through studying and categorizing
the characteristics of these feature requests, we have found that
about 37% of the feature requests were rejected and the most
common rejection reason was redundancy. Also we have found
that it is very expensive to identify and resolve these redundant
feature requests. In this paper, we have proposed our solution
to automatically identify redundant feature requests through a
Feature Tree Model along with a future research agenda.

I. INTRODUCTION

Online tracking systems and open forums, such as Bugzilla1,

JIRA2, and SourceForge3, are widely used by open source

projects as important channels to collect new requirements

(often known as feature requests) proposed by users.

When a new feature request has been posted, project

contributors will create a discussion thread on the forum

to negotiate with reporters and decide whether this feature

request should be implemented [1]. The common factors for

feature request acceptance include benefit analysis, feature

attractiveness, conflicts with current system, feasibility, et al.
This process is considered as OSS requirements analysis [2].

There are two key challenges in the practice of OSS

requirements analysis.

One challenge is that it is difficult for users to submit well-

thought-out feature requests due to their lack of comprehensive

understanding of all the features in the current system. OSS

projects often don’t provide any systems requirements speci-

fications in one document. Instead, information about existing

features can be found in various sources. For example, key

features are often presented in project website; newly added

features are often described in release notes; detailed features

can be found in user manual; and descriptions about unreleased

1http://www.bugzilla.org
2http://www.atlassian.com
3http://www.sourceforge.net

features can be found in pull requests [3]. As the system

evolves, those documentation will also grow in size [4]. When

there is a large volume of documentation, users are less willing

to carefully read through them to learn about existing features

of the system [5]. In this paper, we refer to this kind of feature

requests as redundant feature requests. As a result, users often

submit feature requests that describe existing features in the

system. For example, there are about 42 redundant feature

requests posted per month to Eclipse community from January

to May in 2016, which consumed a large extra effort of OSS

developers on discussing and terminating such requests.
Another challenge is that when users submit low quality

feature requests, it is a waste of time for project contributors

to conduct OSS requirements analysis [6]. For example, when

users submit redundant feature requests or questions on how

to use the system to the forum, conducting such discussion

and analysis on those requests is a waste of time and effort

for project contributors.
An automated method that can identify redundant feature

requests will alleviate the effort from project contributors and

improve the utility of current open forums. The main objective

of our work is to provide an automated support for identifying

redundant feature requests. We consider redundant feature

requests as a significant source of noisy feature requests. In

this paper, we highlight the importance of identifying such

feature requests through conducting a survey on a well-known

open source community. We then propose a road map towards

an automated approach to identify redundant feature requests,

which will be applied and evaluated with OSS projects in

practice.
The rest of this paper is organized like the following:

Section II elaborates the motivation and our empirical analysis.

Section III presents the framework of our solution. Section IV

describes the research agenda in the next future. Section V

introduces the related work. Section VI concludes our work.

II. MOTIVATION AND EMPIRICAL ANALYSIS

To better understand the issues and challenges of OSS

requirements analysis, we conduct a survey on Hibernate

community. Hibernate is an open source Java persistence

framework project, which started in 2001. The reasons we

select Hibernate community4 as our survey target are manifold.

4http://hibernate.org/
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Hibernate community is one of the first open source commu-

nity. Throughout the years, the projects remain popular among

developers and the community stays active. The source code

is hosted and maintained on Github5 while feature requests

including new feature requests are only managed on JIRA6

issue tracking system. There are 20 projects listed in the

JIRA forum. 9 out of 20 projects have short history and have

received less than 20 feature requests in total. We exclude

those projects and analyzed the feature requests in the rest

11 projects, including Hibernate ORM, Hibernate Search,

Hibernate Validator and et al.
We retrieve all feature requests in the 11 projects from

the beginning until now. There are 1898 feature requests in

total. We consider feature requests with label UNRESOLVED
as unresolved feature requests while other feature requests are

considered as resolved feature requests. 30% (571 out of 1898)

feature requests are unresolved and 70% (1327 out of 1898)

are resolved, as shown in Figure 1(a).

Among the resolved feature requests, we consider feature

requests with label FIXED as fixed feature requests, while

others are rejected feature requests. 63% (835 out of 1327)

feature requests are fixed and 37% (492 out of 1327) are

rejected, as shown in Figure1(b).

(a) All feature requests (b) Resolved feature requests

Fig. 1. Status of feature requests in Hibernate community

We notice that there is a relatively high percentage (37%)

of resolved feature requests that were rejected by Hibernate

core contributors. We further investigate the reasons of those

feature requests rejections in the following section.

A. Understand why feature requests get rejected

In order to understand why those 492 feature requests got

rejected, we analyze the comments of each rejected feature

request. Contributors typically provide explicit explanation in

the comments before they reject any feature requests. After

going through the discussion threads of 492 rejected feature

requests, we summarize the reasons in Table I.

Redundant. 23.37% of the rejected feature requests got

rejected due to the proposed features are already existed in

the current system. Existing research [5] shows that people

are often unwilling to read user manual carefully. If users miss

certain features they desire while reading the documentation,

they often submit those feature requests to open forum and

suggest them to be implemented in major or critical priority.

5https://github.com/hibernate
6https://hibernate.atlassian.net

TABLE I
THE REASONS WHY FEATURE REQUESTS GOT REJECTED

Reasons Occurrence Percentage

Redundant 115 23.37%

Duplicate 93 18.90%

Dead threads 42 8.54%

Merged into other threads 38 7.72%

Developers don’t like 30 6.10%

Usage questions 26 5.28%

Conflict 23 4.67%

No longer maintained 22 4.47%

Senseless 20 4.07%

Incomplete 19 3.86%

Out of scope 13 2.64%

Expensive 6 1.22%

Killed by reporter 5 1.02%

Unrealistic 4 0.81%

Unfeasible 4 0.81%

Alternative 3 0.61%

Reduce portability 3 0.61%

Misclassification 2 0.41%

Other 24 4.88%

Total 492 100%

For example, a new feature request HB-11627 was proposed

by a reporter, and marked as Major priority. This request got a

quick response from one of the project leaders with a comment

as “this feature has existed for three years.”

Duplicate. 18.9% of the rejected feature requests got re-

jected due to the proposed requests are duplicate with existing

feature requests. Existing research [7][8] on duplicate detec-

tion for bug tracking systems could alleviate this issue.

There are some other reasons such as Dead threads, Merged

into other threads, Developers don’t like, Usage questions,

conflict, out of scope, etc. that also need to pay attention to.

For example, 7.72% of the rejected feature requests got merged

into other threads due to sharing similar topics. This result

confirm the findings that has been reported by J. Cleland-

Huang et al[6].

B. Effort for Identifying Redundant Feature Requests

In Section II.A, we identified redundant feature requests as

the most noisy feature requests among 492 rejected requests.

In this section, we further investigate the effort spent on

identifying redundant feature requests in terms of duration and

number of participants.

TABLE II
DESCRIPTIVE STATISTICS OF DURATION AND NUMBER OF PARTICIPANTS

Mean MIN MAX Standard Deviation

Duration (in days) 260 0.002 2995.81 638.44

#Participants 2.4 1 5 0.73

We define duration of a feature request as the time span

between the request is created and the request is resolved. We

define number of participants as the number of individuals

who involved in the discussion of a feature request.

7http://tinyurl.com/jjkz9bd
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The descriptive statistics about the duration and the number

of participants of the 115 redundant feature requests are shown

in Table II. For each redundant feature request, it takes 260

days on average to resolve the request, and on average there

are 2.4 contributors including the original reporter devoted to

the discussion threads.

The distribution of duration of redundant feature requests

is shown in Figure 2(a). The medium is 0.7 days, which

means half of the requests get resolved in less than 0.7

days while the other half takes more than 0.7 days to be

resolved. The duration of redundant feature requests varies in

a wide range, which means some redundant feature requests

take longer to be resolved while some take less. Figure 2(b)

shows the distribution of the number of participants involved

in redundant feature requests. The medium number is 2, which

means half of the requests have more than 2 contributors that

were involved.

(a) Duration (b) Number of participants

Fig. 2. Distribution of Duration and Participants

All the above results show that identifying redundant feature

requests is very expensive. Since redundant feature requests

are just noisy requests, which provide no benefits to the OSS

community as well as waste efforts of the core contributors,

our objective is to develop an automated method to identify

such feature requests by comparing the feature request with

the existing features.

III. AUTOMATE REDUNDANT REQUESTS IDENTIFICATION

In this section, we report our solution to identify redundant

feature requests. The overview of the procedure is shown in

Figure 4. First, we construct three candidate feature trees from

user manual, release notes, and pull requests. Then we merge

the three feature trees into a compound one. Given a new

coming feature request, we search the merged feature tree

and find the most similar sub-tree. Then we further find the

most similar leaf node from the sub-tree. By comparison with

the similarity threshold, we decide whether the input feature

request is redundant or not. We present the procedure in details

in the following sections.

A. Construct Candidate Feature Trees for OSS projects

We define a feature tree model as shown in Figure 3 to

present features for OSS projects. The RootNode denotes the

OSS project. The StructNode denotes the component that

links to a set of features. The attribute Keywords summarizes

the functionality of the component, and the group attribute

< Source, Summary,Description > includes source docu-

mentation where the description comes from, the summary of

the feature, and the detailed description about the feature. We

use plus sign to represent multiple entries and minus sign for

single entry. Since source, summary, and description could be

more than one entry, we use the plus sign. In this study, there

are three sources: UM(User Manual), RN(Release Notes), and

PR(Pull Requests).

R tN dRootNode

StructNode FeatureNStructNode FeatureN

FeatureNode

NodeNode

Fig. 3. Feature tree model.

Based on the feature tree model, we construct three candi-

date feature trees of OSS project like the following:

• Construct the basic feature tree from user manual.
User manual provides instructions to assist users in using

the system. It consists feature-related such as descriptions

of features of the current system and usage of these

features and non-feature-related parts such as software

installation and FAQ (Frequently Asked Questions). The

feature-related parts are organized in sections and sub-

sections. The titles of these sections and subsections

summarize one or more features that are described within,

which can be considered as appropriate keywords for

these features. Therefore, we use the titles of feature-

related parts in user manual to construct the basic feature

tree of OSS projects. First, we prune the user manual by

excluding the non-feature-related parts such as overview

and reference. Second, we extract the structure of the

document to build StructNodes. We record the title of

each section that are not the lowest level as keywords.

Third, we consider the lowest level of subsection as the

FeatureNode. We extract keywords from the title, and

extract the paragraphs in the Description, and mark the

Source as UM. Figure 5(a) shows an example of a partial

feature tree built from user manual8 of Hibernate ORM

5.1.

• Construct the feature tree from release notes. Typically

each entry in release notes provides a link to its fixed

issue report listed on issue tracking system. First, we

collect all the entries in the release notes with their linked

issue reports. Then we check each linked issue report

and classify its corresponding entry as a newly added

8http://tinyurl.com/guodtsy
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Fig. 4. The procedure of identifying redundant feature requests

feature if the linked issue report is labeled as NEWFEA-
TURE. Third, we build the StructNodes by extracting the

component attribute from the linked issue report. Finally,

we build FeatureNode for each newly added feature by

extracting the short summary from the release note, the

textual description as Description, and mark the Source
as RN. Figure 5(b) shows an example of a partial feature

tree built from the release note9 of Hibernate ORM 5.1.

• Construct the feature tree from pull requests. Since

features that have already been implemented but not yet

released are recorded in the pull requests, we consider

the pull requests to be the third source to extract current

features. Construct the feature tree from pull requests

is similar to building from release notes. Pull requests

contain linked issue reports as well as corresponding

descriptions, so we can use the same procedure as we

described above for release notes. Figure 5(c) shows an

example of a partial feature tree built from pull request10

of Hibernate ORM 5.1.

B. Merge Candidate Feature Trees

Once we have three candidate feature trees, we merge them

together to obtain the final feature tree of the OSS project.

We use the feature tree FTU constructed from user manual

as the basic tree. First, for each FeatureNode f from feature

tree constructed from release notes and pull requests, we

retrieve the StructNode s with the highest textual similarity in

FTU . Second, for each FeatureNodes linked with s, we retrieve

the FeatureNode fU with the highest similarity between f.
Third, we merge f into fU . The example of the merging result

of the three example feature trees in Figure 5 is shown in

Figure 6.

C. Identify Redundant Feature Request

Once we derive the merged feature tree FT, we can use it to

locate the lowest level of StructNode S that new feature request

9http://tinyurl.com/ha4j3ea
10http://tinyurl.com/h4j3kth

RootNode

StructNode

FeatureNode FeatureNode

(a) Feature tree from user manual

StructN

FeatureFeature

Node

eNodeeNode

(b) Feature tree from release
note

StructNode

FeatureNodeFeatureNode

(c) Feature tree from pull re-
quest

Fig. 5. Examples of candidate feature trees

R should belong to by calculating the similarity between R and

all StructNodes in FT and returning S with highest similarity.

With the StructNode S we found from previous step, we then

can calculate the similarity between R and all FeatureNodes
linked to S. If the highest similarity is greater than a pre-

defined threshold t, which is calculated and trained using

project historical data, then FeatureNode F with the highest

similarity with R is considered the redundant feature request.

Otherwise, R is a new feature request. The detailed procedure

is described in Algorithm 1.

IV. RESEARCH AGENDA AND APPLICATION

The current paper examines the importance of identify

redundant feature requests and briefly describes our solution.
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RootNo

StructNo

F t N dFeatureNode

ode

ode

F t N dFeatureNode

Fig. 6. Merged Feature tree.

Algorithm 1 Identify Redundant Feature Request

1: procedure REDUNDANTIDENT(Merged Feature Tree FT,
New Feature Request R)

2: s← StructNode
3: matchStructNode← 0
4: matchFeatureNode← 0
5: max← 0
6: for each StructNode s : FT do
7: sim← similarity(s,R)
8: if sim > max then
9: max← sim

10: matchStructNode← s
11: max← 0
12: for each FeatureNode f linkto matchStructNode do
13: sim← similarity(f,R)
14: if sim > max then
15: max← sim
16: matchFeatureNode← f

17: if max >= threshold then
18: return true
19: else
20: return false

In the near future we plan to complete the research in the

following steps.

Implement tools to build feature trees. We plan to

implement tools that can use user manual, release notes, and

pull requests as input to build and merge feature trees as we

introduce in Section III. The key problem is how to accurately

merge the feature trees according to the extracted keywords.

Since release notes and pull requests may use a different

terminology with the one used in the user manual, we plan

to build words dictionary for core features.

Implement redundant identification algorithm. To exper-

iment with various similarity comparison methods, we plan

to include Dice’s coefficient, Jaccard Index, cosine similarity

[9][10], semantic similarity [11], and domain-related feature

analysis [12] to improve the accuracy of the results. To

increase the generalization of the classification threshold,

we plan to train the threshold from large set of historical

cross-project data. The key problem need to be solved is

how to transform a natural language requests into a format

that supports the similarity measurement with features in the

feature tree. We plan to decompose the requests according

to the textual metedata such as component, summary, and

description, and then compute a balanced similarity according

to the weights.

Prepare experiment data. we plan to collect all the rejected

requests of enhancement and new features from Eclipse,

Apache, Mozilla issue tracking systems. We select the requests

those contain “already exists” or “already support” in their

comments. Then we manually identify redundant feature re-

quests by ourselves or by outsourcing. For identified requests,

we collect all their meta attributes such as priority, component,

and summary.

Evaluate the solution. We plan to evaluate the proposed

approach by applying the algorithm on multiple OSS projects,

such as Eclipse, Mozilla, Linux Kernel, and Apache. We can

use the experiment data as new requests, and evaluate the

precision and recall of the approach.

Develop two Bugzilla plugins. To collect feedback from

OSS community to refine our solution, we plan to develop

one plugin that prompts similar features to users when they

type new feature requests, and another plugin that identifies

redundant feature requests to contributors when there are new

feature requests.

Empirical Analysis. Some feature requests got rejected due

to they request features on a module that is no longer being

maintained or request features that are out of the scope of

the system. Some feature requests were rejected due to low

quality such as senseless, incomplete, or unrealistic contents.

We also plan to expand the scope of our empirical studies to

investigate the categories of feature requests that are worthy

of developers’ attention.

Meanwhile, there are some limitations of this study. As

the computation of the similarity between the issue and the

node is based on the terms used, the approach will not allow

identifying redundant issues where the reporter uses a different

terminology than the one used in the user manual. Besides, the

feature trees built in our approach is for descriptive purpose.

Unlike the feature trees built in feature-oriented requirements

engineering for verification purpose. It cannot clearly reflect

the decomposed modules of the system since the cross-cutting

features are not considered. However, the feature tree can be

used as an initial source of input to a further design-oriented

analysis.

V. RELATED WORK

Automated analysis for OSS requirements. Cledland-

Huang et al [6] designed an automated forum management

(AFM) system, which is used to manage feature requests.

This research provided a more accurate way to group feature

requests, therefore, to make it easier for users to decide where

to place new feature requests. Gill et al [13] proposed a

semi-automation framework that solves the burdening natural

language ambiguity problem in Open Source Software De-

velopment (OSSD). Through combining the positive attributes
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of automation oriented domains and support the humans to

arrive at precise and unambiguous requirements, the authors

concluded that this framework can be used as a guide to OSSD

community members to resolve ambiguities. Thung et al [14]

proposed an automated recommendation approach that takes

as input a textual description of a feature request. It then

recommends methods in library APIs that developers can use

to implement the feature. The results of the experiment shows

that this approach is able to recommend the right methods

from 10 libraries. Maalej and Nabil [15] leverage probabilistic

techniques as well as text classification, natural language

processing, and sentiment analysis techniques to classify app

reviews into bug reports, feature requests, user experiences,

and ratings. Their results show that the classification can

reach the precision between 70-95% and recall 80-90% actual

results. Although app reviews could be substantially different

from feedback provided in OSS issue tracking system, the

natural language processing and text classification techniques

could benefit the feature-tree building process in our approach.

Analysis of continuous flow of industrial requirements.

Dag et al [9] used automated similarity analysis, which is com-

monly used in industry for supporting requirements engineers

to identify requirements duplicates and inter-dependencies.

Through empirical studies, the authors concluded that they do

not believe that the presented technique can replace human

judgment, but the results suggest that automated similarity

analysis on a syntactic level using information retrieval tech-

niques may be effective in pinpointing true duplicates and

inter-dependencies.

VI. CONCLUSION

In this paper, we conducted a survey in the Hibernate

community to examine the characteristics of feature requests.

There were 1898 feature requests retrieved from Hibernate

JIRA page from the beginning of the project until 2016. 30%

of the feature requests are unresolved and 70% are resolved.

Among all the resolved feature requests, 63% of the feature

requests are fixed while 37% are rejected. Among all the

rejected feature requests, the highest percentage for rejection

(23.37%) is due to redundancy, which means the proposed

feature request describes feature that already exists in the

current system. Developers in the community have to waste

hours to manually go through and identify these redundant

feature requests. These results led us to propose a procedure to

automatically identify these redundant feature requests. With

this initial algorithm, we plan to conduct further research with

implementing it as a Bugzilla plugin and then evaluate with

OSS projects to collect feedback from OSS community. We

believe that our solution will benefit OSS project contributors

from saving time and effort on manually identifying redundant

feature requests.
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